ALTERNATIVE FUELS AND MARITIME ENERGY MANAGEMENT

By Aykut I. Ölçer, PhD, MSc, BSc

Nippon Foundation Professorial Chair in Marine Technology and Innovation
Head, Maritime Energy Management (MEM) specialization
Head, Marine Technology and MEM Research Group (MarEner)
Editor-in-Chief of WMU Journal of Maritime Affairs (JOMA) and Book Series
Programme Coordinator, PG Diploma in Maritime Energy
World Maritime University (WMU) of the IMO
A Specialized Agency of the United Nations
Malmö, Sweden
Shipping Air Emissions and Its Impacts

Figure 8.1 Schematic diagram of the overall impacts of emissions from the shipping sector on climate change (from Lee et al., 2009a)

(Source: IMO 2nd GHG Study, 2009)
Motivation and Drivers (Why?)

• Environmental impact of Air Pollutants and GHGs (climate change, externalities, ....)

• More stringent environmental regulations (Paris Agreement ?, MARPOL Annex VI Chapter 3 (SOx, NOx, ..) & Chapter 4 (GHG))

• Volatile fuel oil price

• World population, energy demand and prices

• Energy resources scarcity and Energy security

• UN2030 Agenda (SDGs 7, 12 & 13 in particular)

Key Pillars of Maritime Energy Management

- Regulatory framework
- Energy efficiency
- Renewable/cleaner energy
- Technology and innovation
- Human factors
- Economics of energy management

Regulation 13 – NO$_x$ Emission Limits

<table>
<thead>
<tr>
<th>Tier</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>- Constructed on or after 1 Jan. 2000</td>
</tr>
<tr>
<td>Tier II</td>
<td>- Constructed on or after 1 Jan. 2011</td>
</tr>
</tbody>
</table>
| Tier III* | - Constructed on or after 1 Jan. 2016  
- Applied in ECAs  
- Tier II applied outside of ECAs |

* For a ship operating within North American ECA and US Caribbean Sea Area ECA

(Source: WMU Maritime Energy Management Specialization EGY102 Lecture Notes)
**NO\textsubscript{x} Regulations**

- **Tier I** emission limits apply to all marine diesel engines with a power output of more than 130 kW installed on ships constructed on or after 1 January 2000 and prior to 1 January 2011.

- Emission limits equivalent to Tier I may apply to marine diesel engines with a power output of more than 5,000 kW and a per cylinder displacement at or above 90 litres installed on a ship constructed on or after 1 January 1990 but prior to 1 January 2000 according to regulation VI/13.7.

- **Tier II** emission limits apply to all marine diesel engines with a power output of more than 130 kW installed on ships constructed on or after 1 January 2011.

- **Tier III** emission limits apply to all marine diesel engines with a power output of more than 130 kW installed on ships, operating in a NO\textsubscript{x} emission control area, constructed on or after the date of adoption of the NECA (or a later date as may be specified in the amendment to the Convention designating the NECA, whichever is later).

(Source: WMU Maritime Energy Management Specialization EGY102 Lecture Notes)
Tier III

Emission Control Areas (ECAs) for NO\textsubscript{X} Emission Control

Reg. 13.5.1:

Tier III controls apply only to the specified ships while operating in ECAs established to limit NO\textsubscript{X} emissions, outside such areas the Tier II controls apply.

- North America ECA + US Caribbean ECA for ships constructed on or after 1 January 2016
- Baltic Sea and North Sea ECAs for ships constructed on or after 1 January 2021.

(Source: WMU Maritime Energy Management Specialization EGY102 Lecture Notes)
North Sea and Baltic Sea NECAs

- MEPC 70 approved North Sea and Baltic Sea as an ECA-NOx

- This will require marine diesel engines to comply with Tier III NOx emission limit when installed on ships constructed on or after 1 January 2021 and operating in North Sea and Baltic Sea

- MEPC 70 agreed to the need for exemption provisions to allow ships fitted with dual fuel engines or with only Tier II engines to be built, converted, repaired and/or maintained at shipyards located in NO\textsubscript{x} Tier III ECAs

(Source: WMU Maritime Energy Management Specialization EGY102 Lecture Notes)
Regulation 14 - Sulphur Oxides (SOx) and Particulate Matter

From 19 May’05, Sulphur Oxide (SOx) emission from ships is controlled by setting a limit of 4.5% on sulphur content of Marine Fuels.

From 1 January 2012, the global sulphur limit of marine fuels reduced to 3.5%.

From 1 January 2020, the global sulphur limit of marine fuels reduced to 0.5%.

A number of agreed ECA-SOx has been set up.

The sulphur limits in ECA-SOx are more stringent and currently at 0.1% sulphur.

(Source: WMU Maritime Energy Management Specialization EGY102 Lecture Notes)
Regulation 14 - Fuel Sulphur Limits

- Fuel oil
- % sulphur

- 4.50
- 3.50
- 1.50
- 1.00
- 0.10
- 0.50

- 1.1.2012
- 1.1.2010
- 1.1.2015
- 1.1.2020

- Time

- Non-ECA
- ECA

(Source: WMU Maritime Energy Management Specialization EGY102 Lecture Notes)
IMO Response and Enhancing EE (Reducing CO₂)

- Technical Measures (Better design of ships and equipment)
- Operational Measures (Better operation of ships)
- MBM (Discussions suspended)
Decision Making and Trade-Off

- Cost/Benefit

- Cost (for whom?) (CAPEX, OPEX, Externality?)

- Benefit (for whom?)

- Perspective and decision maker

- Individual solutions and right combination?

(Source: IMO/MEPC-67-INF-9-TARGETS)
Future Ship Propulsion

• From Human to Diesel Engines
• Fuel cells, batteries
• Nuclear (Thorium?)
• Alternative fuels and Renewable (Solar, Wind, LNG, biofuel, Methanol, ..)
• Hybrid (right mix?)

(Ref: Shipping innovation by Niko Wijanolst, Tor Wergeland, Figure 407, page 378)
Barriers

• Individual
• Organisational
• Technological
• Economical
• .........
Other Challenges

• Maritime Digitalisation (big data)

• Autonomous vs. Zero Emission Shipping

• System blindness
This book provides an overview of contemporary trends and challenges in maritime energy management (MEM). Coordinated action is necessary to achieve a low carbon and energy-efficient maritime future, and MEM is the prevailing framework aimed at reducing greenhouse gas emissions resulting from maritime industry activities. The book familiarizes readers with the status quo in the field, and paves the way for finding solutions to perceived challenges. The 34 contributions cover six important aspects: regulatory framework; energy-efficient ship design; energy efficient ship and port operation; economic and social dimensions; alternative fuels and wind-assisted ship propulsion; and marine renewable energy. This pioneering work is intended for researchers and academicians as well as practitioners and policymakers involved in this important field.
References

• A Ölçer, Maritime Energy Management Specialization MSc program EGY102 Lecture Notes, World Maritime University, Malmo, Sweden


