Denmark LNG Shipping Seminar
Risk management for LNG terminal development

Johan Gärdin
2014-05-12
Content

- Supply of LNG as fuel
- Risk management in a project
- Hazard Identification
- Quantitative Risk Assessment
- Acceptable risk
- Risk controls
- Examples
Supply of LNG as a bunker fuel – Options available

LNG supply infrastructure

- Onshore LNG tank
- LNG truck loading station
- LNG Terminal
- Environmental permit
- Safety case (Seveso)
- Building permit

LNG bunkering options

- Truck-to-ship
 - LNG
 - ADR
 - Port State Legislations
 - Accreditation

- Jetty-to-ship
 - LNG Bunkerbarge
 - IMO IGC
 - Class Rules
 - Flag state
 - Port State
 - Accreditation
 - ISO Guideline (draft)
 - Local bunkering procedures

LNG received as shipping fuel

- LNG ISO container
- Receiving Vessel
- LNG Bunkerbarge
- IMO IGF
- Class Rules
- Accreditation
- IMO IGC
- Class Rules
- Flag state
Which location and storage solution shall be chosen depends on the why, what, how & when for all relevant domains in the LNG bunkering value chain.

- **“Know-why”** Market and Competitive Strategy
 - Understand customer buying behavior (customer drivers) and feasible strategies. Target key segments. Identify competitors, complementors, and partners.

- **“Know-what”** Product Roadmap
 - Decide how the product will be differentiated to win in key segments. Translate overall customer drivers into product drivers for this specific product. Set multi-year targets.

- **“Know-how”** Technology Roadmap
 - What technologies are most important? Link product drivers to hardware, software, and manufacturing technologies. Identify multi-generation technology investments to maintain competitiveness.

- **“To-Do”** Summary and Action Plan
 - What resources and investments are needed? Plan projects with the highest priorities. Are technology investments in the most important areas? Identify and track risk areas.

(Sources: Tom Kappel; Phaal, R., Famvik, C., and Probert, D., Fast-start Technology Roadmapping; Richard Albright.)
1 Supply solution
Fixed storage solutions

- Seveso legislation, if the capacity exceeds 50 ton (low tier Seveso) or 200 ton (high tier Seveso) => requires a safety report (exact form / scope depending a bit on national legislation)
- Building permit
- Environmental permit

- Might be subject to local legislation issued by e.g. the municipality
- Might be subject to additional rules issued by e.g. the local fire brigade, the harbour master office
1 Supply solution
Truck supply

1. Trucks supplying LNG to land installations
 • Truck transport is governed throughout Europe by the ADR legislation, contains requirements for the truck as well as for the driver
 • For access to port area/terminal additional accreditation can be asked for (e.g. at the Zeebrugge LNG terminal only accredited truck & drivers are allowed access, the requirements for this accreditation are issued by the operator of the terminal, they are more stringent than what ADR prescribes)

2. Trucks supplying LNG to ships (bunkering)
 • Governed by bunkering procedures & port state legislation with regard to handling of dangerous goods in the port
 • Temporary storage of ISO containers at quays is considered similar
1 Supply solution
Bunker vessel/barge supply

- Have to comply with class rules in general + flag state
- Have to comply with IMO IGC code (The International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk)
- Bunkering operations governed by port state legislations/procedures
- Some ports allow bunkering companies only after an accreditation process

ISO guidelines
Defines philosophies of designs and operations relevant to LNG bunkering facility (May 2013)

IAPH/WPCI
Develop guidelines/checklist and/or assess the possible impact at ports (Nov 2013)

DNV GL RP
A practical guide on developing design solutions and operating procedures to undertake LNG bunkering safely and efficiently (Oct 2013)

DMCA
Provided an example of operational guidelines for LNG Bunkering (2012)

Various initiatives
Norway
Stockholm
Gothenburg
Antwerp (TTS) - Q1 2014
Singapore - ongoing

Shell guideline
(2012)

EMSA

Ship to Ship
Operating procedures for LNG bunkering from barge in Port of Gothenburg (2010)

LESAS
Started its own development of LNG bunker regulations – National approval guidelines are under development

SIGTTO / SGMF
Through the LNG Fuel Safety Advisory Group, SIGTTO will provide advice on design, operation and maintenance of LNG marine fuel system
Risk management in a project – An integral part of the engineering

Methodologies for managing risk rather than following a prescriptive rule can be selected based on the level of uncertainty and novelty in the concept to be evaluated:

LOW: Well understood changes, little new or unusual, no strong stakeholder opinions, no major economic impact

MEDIUM: More complexity, deviation from standard or best practice, uncertainty in risks, some trade-offs, some stakeholder concern, significant economic impact

HIGH: Unique challenges, novel or challenging aspects, large uncertainties, strong views and perceptions, major economic impact

Based on UKOOA
Risk management in a project – An integral part of the engineering

The three levels of uncertainty and novelty in turn can be addressed as follows:

LOW: Mainly a straightforward engineering issue

MEDIUM: Thorough identification of the hazards and risk scenarios required, followed by decisions of how to manage

HIGH: As for Medium, adding a quantified analysis of the risk levels and detailed risk management, including engineering changes and other risk control actions
Risk management in a project – An integral part of the engineering

- Risk for human health and safety as well as environmental risks
- Structured risk management; identify and illustrate risk enabling improvement in engineering and operations.

Risk management in three phases

1. Risk **analysis**
2. Risk **evaluation**
3. Risk **reduction**

- Risk management will be required both in relation to terminal development, seaside shipping solutions as well as bunkering solutions in any development project
- Risk analysis may have to be refreshed as engineering progresses
Risk management in a project – An integral part of the engineering

- Risk analysis in two stages:
 - **HAZID** – initial identification of scenarios, hazards and barriers
 - **QRA** – Quantitative risk analysis based on HAZID scenarios
 - Evaluation of domino scenarios (cumulative risk, reinforced risk)
 - Evaluation of risk level in relation to generally accepted criteria, eg. UK Health and Safety Executive - HSE, Netherlands Purple Book and local legislation and interpretations.
HAZID (HAZard IDentification) study

- Identification of:
 - What can go wrong?
 → identification of hazards and risk scenarios
 - What is the effect?
 → Consequence to human, property and the environment
 - How to manage?
 → Recommendations for risk management activities
 (prevent, limit, or monitor).

A HAZID for a terminal typically produces around 90 risk scenarios
QRA – Quantitative risk analysis

Risk = Probability x Effect

Why QRA?
→Visualise and illustrate risk levels based on quantification of

QRA

What?
- Safety for the individuals
- Safety for society

How?
- Enough separation between risk and the person
- Limit municipal disturbances

Measure?
- Individual Risk
- Society Risk
Example for terminal development, but will be similar for all areas

- Safety aspects related to **maritime operation** and loading/unloading and quay

- Safety aspects **within terminal**

- Safety aspects in relation to **train and truck traffic**

- Safety aspects of **pipelines and flare**

- Effect on **surrounding society**

- Potential domino effect and escalation scenarios to **other adjacent industry**.
Risk is quantified based on probability of a scenario and effect on human life

- **Probability classes:**
 - 1 in a million years = 10^{-6}/y
 - 1 in a billion years = 10^{-9}/y
 - Etc.

- **‘Effect area’**
 - Maximum area where humans will be affected by a scenario.

- Shall be established using validated and acknowledged dispersion models.

Individual risk illustration
How to assess the results from a QRA, what is acceptable risk

Risk in everyday life?

- Different day to day risks
 - Bee sting \(1 \times 10^{-7}\) 1 in 10 million years
 - Lightning \(2 \times 10^{-7}\) 1 in 5 million years
 - Airplane crash \(1.2 \times 10^{-6}\) 1 in 814,000 years
 - Driving \(1.75 \times 10^{-4}\) 1 in 5,700 years
 - Smoking (1 pack/day) \(5 \times 10^{-3}\) 1 in 200 years

Acceptable risk is not a universal axiom, differs between persons, companies, municipalities, regulators and countries.

Are there readily defined acceptance criteria?

- No – but there are acceptance criteria in Europe that can be used as benchmarks, in combination with any local industry standards.

 - Great Britain (HSE):
 - Maximum tolerable risk for workers \(10^{-4}\) per year
 - Maximum tolerable risk for society \(10^{-5}\) per year
 - Negligible \(10^{-7}\) per year

 - Netherlands:
 - Maximum tolerable risk \(10^{-6}\) per year
Risk Controls

Key words for options:

- Tolerate – the risk is deemed acceptable to all stakeholders
- Treat – the risk can be reduced or mitigated to an acceptable level in a cost-effective manner
- Transfer – the risk can be made acceptable by transferring the effects (e.g., insurance)
- Terminate – the risk can never be acceptable and the activity must cease
How does it look in Frederikshavn

Modelling assumptions

- Worst case scenario: catastrophic rupture of LNG storage tank
- Maximum effect zone is represented by 100% Lower Flammability Level.
- Storage conditions:
 - 1000 m³ storage tank
 - Saturated liquid at 5 barg storage pressure
- Weather type: D5 (most conservative for all considered scenarios)

Location

- Modelled at randomly selected locations in the port purely for illustrative purposes.
- To show the effect distance and what needs to be included in the analysis, if a terminal is to be located in the port
- Does not say anything about the risk and risk analysis will require more work, but illustrates the impact area,
Modelled scenarios

<table>
<thead>
<tr>
<th>Single tank capacity</th>
<th>Esbjerg</th>
<th>Frederikshavn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 m³</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2000 m³</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4000 m³</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The 2000 m³ and 4000 m³ scenarios were modelled at the location of a proposed LNG terminal in Esbjerg.

The 1000 m³ scenarios in Esbjerg and Frederikshavn were modelled at randomly selected locations in the port purely for illustrative purposes.

The result is shown as LFL or Maximum effect contours.
LFL contour - Esbjerg 4000 m³ storage tank
LFL contour - Esbjerg 2000 m³ storage tank

Tank location
Maximum effect zone - Esbjerg 1000 m³ storage tank (Location for illustrative purpose only)

- In the example a location has been chosen for illustrative purpose.
- In siting studies simplified QRAs are used for assessing suitability of location from a risk/safety perspective.
Maximum effect zone – Frederikshavn 1000 m³ storage tank (Location for illustrative purpose only)

- In the example a location has been chosen for illustrative purpose.
- In siting studies simplified QRAs are used for assessing suitability of location from a risk/safety perspective.
QRA usage for modelling an entire energy port risk profile – current situation in relation to suggested development

QRA is a powerful tool for illustrating the entire risk picture and facilitate communication with society, industry, regulating bodies and other stakeholder organisations.