17th INTERNATIONAL CONFERENCE & EXHIBITION ON LIQUEFIED NATURAL GAS (LNG 17)

MINIMIZING THE CO₂ EMISSION FROM LIQUEFACTION PLANT By: Yoshitsugi Kikkawa, Moritaka Nakamura, Chiyoda Corporation, Yokohama, Japan 17 April, 2013

International Organizers

Host Association

1.Introduction

- The 1st generation LNG power chain for Japan started with gas supplies from Alaska Kenai LNG, Brunei LNG and ADGAS LNG, and resulted the planned air pollution reduction has been successfully achieved.
- Reduction of CO₂ emission to solve global warming
- After the Fukushima Daiichi Nuclear Power Station accident caused by the March 11, 2011 tsunami, LNG will be a solution for reduction of CO₂ emission

- Acid gas removal and carbon capture and storage (CCS)
- Optimizing the liquefaction system.
- Minimizing the flare load during train start-up and shut down
- Optimizing the prime mover system, including e-drive
- Carbon capture and storage (CCS) from the flue gas of the plant

- Plant Location: Oceania
- Feed Gas Composition:

Component	Mol%
CO ₂	1.0
N2	0.1
C1	86.5
C2	8.2
C3	3.4
C4	0.8
C5	0.0

- Feed Gas Condition
 - Pressure: 70bar
 - Temperature: 27deg.C
 - An air cooling system was used for the plant

2. Study Basis(2/2)

- Feed Gas Price: 2/4/6 US\$/mmbtu
- Plant Capacity: 9-10MTA by 2 trains
- Liquefaction Process: C3-MR Process
- Delivery Pressure of CCS: 150bar
- CO₂ Price for EOR: 40 US\$/tCO₂
- Carbon Tax for CO₂ Emission: 16-154 US\$/tCO₂

Fig. 2.1 Typical C3-MR Process Flow Diagram

CHIYODA CORPORATION

Table 2.1 Carbon Tax Example

Country	Currency	Carbon Tax, Currency/tCO ₂	Currency/ US\$	Carbon Tax US\$/tCO ₂
Finland	euro	20	1.318	26.4
Sweden	SEK	1,010	0.153	154.2
Norway	NOK	371	0.179	66.3
Denmark	DKK	90	0.177	15.9
Australia	A\$	23	1.037	23.8

3. Study Result

- 3.1 Acid Gas Removal (AGR) and Carbon Capture and Storage (CCS)
- 3.2 Optimizing the liquefaction system
- 3.3 Minimizing the Flare Load
- 3.4 Driver Option
- 3.5 Comparison of Fuel CO₂ Emission
- 3.6 CCS Costs Estimation for Fuel CO₂

Fig. 3.1 tCO₂ Emission /tLNG from Operating LNG Plant

3.1 Acid Gas Removal (AGR) and Carbon Capture and Storage (CCS)

- 4 Stage Compression
- Dehydration at the 4th Stage Inlet
- CCS Cost
 - Additional Equipment Costs
 - Additional Fuel Cost

Fig.3.2 AGR CO₂ CCS Cost

3.2 Optimizing the liquefaction system – Turbo-Expander Application

Fig.3.3 Cross section of Two-Phase Expander

Ref: Kikkawa et. al."Completing the Liquefaction Train by Using Two-Phase LNG Expanders" AIChE Spring Meeting, Tampa, Florida, USA, Apr.27-30 2009

Table 3.1 Expected Cycle Efficiency Improvement

Expander Location	Liquid Expander	Two-Phase Expander
LNG	2.5%	3.0%
Light MR	0.5%	0.7%
Heavy MR	2.2%	2.8%

Wet Surface Air Cooler (WSAC) Application

Fig. 3.4 WSAC Flow Diagram

Ref: Kuo, J. C. et. al., "49e. New Cooling Application: Total Heat Removal from Base Load LNG Plant", AIChE Spring Meeting, Chicago, IL, Mar. 13-17, 2011

Fig.3.5 Wet Bulb Temperature vs. Relative Humidity @ 27 deg.C

Fig.3.6 Ref. Power vs. Relative Humidity of Air for WSAC Application

Fig.3.7 Heat Rate vs. Relative Humidity of Air for GE Frame 7

70

80

90

100

LNG 17 * GNL 17 HOUSTON 2013

(a) Start-up and Scheduled Shut Down(b) Flare Load from Relieving Device

3.4 Driver Option

Table 3.2 Performance of Gas Turbine by GE

Name	GE Model	Туре	ISO Power (MW)		Thermal Efficiency
			GT	ST	
LM2500	LM2500+G4	Aero	31	-	40.4%
LMS100	LMS100	Aero	100	-	43.7%
Frame 6	Frame6B	Heavy Duty	42	-	32.1%
Frame7	Frame7EA	Heavy Duty	86	-	32.7%
Frame9	Frame9E	Heavy Duty	130	-	33.1%
S106B	S106B	Combined Cycle	38	22	49.0%
S106FA	S106FA	Combined Cycle	67	42	52.9%
S109E*	S109E	Combined Cycle	123	70	53.0%

*Note: The Option 3 configuration is based on this type.

Table 3.3 Driver Configuration for Driver Options

Case	C3 Compressor Driver	MR Compressor Driver	CCS
Option 1	Frame 7 (C3+HP MR)	Frame 7 (LP +MP MR)	No
Option 2	LMS100 (C3+HP MR)	LMS100 (LP +MP MR)	No
Option 3	Steam Turbine	Frame 9	No
Option 4	Motor	Motor	No
Option 5	Motor	Motor	Yes

OPTION–1 Compressor and Driver Configuration

OPTION-2 Compressor and Driver Configuration

Fig.3.8 Option-1 Configuration

Fig.3.9 Option-2 Configuration

OPTION-3 Compressor and Driver Configuration

Fig.3.10 Option-3 Configuration

OPTION-4 Compressor and Driver Configuration

Fig.3.11 Option-4 Configuration

MEA Process

Fig. 3.12 Process Configuration for Fuel CO₂ CCS

LNG 17 * GNL 17 HOUSTON 2013

Table 3.4 Power Plant Configurations for Driver Options

Case	Operation	Stand-by	Remarks
Option-1	Frame 6 x3	Frame 6 x1	
Option-2	LM2500+ x 4	LM2500+ x1	
Option-3	S106B x2 +Frame 6	Frame 6 x1	
Option-4	S106FA x4	S106FA x1	
Option-5	S106FA x5	S106FA x1	

3.5 Comparison of Fuel CO₂ Emission

tCO2/tLNG

Fig. 3.13 Fuel CO₂ per ton LNG

3.6 CCS Costs Estimation for Fuel CO₂

Fig.3.14 CO₂ CCS Cost for Fuel CO₂

4. Conclusion and Future Consideration

- Wide options to address the reduction of CO₂ emissions from the liquefaction plant towards zero.
- The AGR CCS will be reasonably justified when EOR operation is located near the LNG plant. Increasing the thermal efficiency of the driver system will be reasonably justified by reduction of the fuel requirement. However, the CCS of fuel CO₂ will be difficult to justify even where EOR can be used at the location.
- In Future, the CCS of fuel CO₂ will be performed at the LNG plant site if the social/government requests further reduction.

