Technological innovation and infrastructure in the LNG industry

By: Philip OLIVIER, President, GDF SUEZ LNG

19 April 2013
This presentation is not intended to provide the basis for any evaluation of GDF SUEZ or of any of its subsidiaries. Although GDF SUEZ uses reasonable care to include in this presentation information which it believes is up-to-date and accurate, GDF SUEZ makes no representation or warranty as to the adequacy, accuracy, completeness or correctness of such information nor does it warrant or represent that the presentation shall be complete in every respect. GDF SUEZ shall have no liability resulting from the use of the information provided in this presentation nor shall it have any liability for the absence of any specific information herein. The information may be changed by GDF SUEZ at any time without prior notice. Nothing herein may be considered as being an offer to purchase or subscribe securities. The name and logo of GDF SUEZ, as well as the name and logo of affiliated companies, that appear in this presentation are trademarks and trade names protected by national and international laws. The copyright on this presentation belongs to GDF SUEZ.
History of the LNG industry

1955 – 1965
Pioneer age

1965 – 1975
Industrial and commercial development

1975 – 1995
Industrial and commercial maturity

1995 – 2005
New expansion phase: Mega-trains,...

2005 – Present
FSRU, FLNG, Terminal Conversion

Le Havre, France

Kenai LNG Plant, Alaska

Qatari mega trains
Innovation in Liquefaction
Innovation in Liquefaction

OBJECTIVES

- **Construction cost reduction**
 - Use of aeroderivative gas turbines
 - Reduction of feedgas consumption: 20% - 25%

- **Operation cost reduction**
 - Increase in train sizes from 1.3 to 7.8 mtpa
 - 40% liquefaction costs reduction
 - Conversion of LNG terminal in the US
 - CAPEX savings: 10%
 - Modularization construction
 - CAPEX savings: up to 10%
 - Expanders for end flash
 - 1% increase in LNG volumes produced

- **Business Development**
 - FLNG / Liquefaction barges
 - Access to more than 800 stranded fields.
 - Ship-to-ship / Offloading system
Monetizing stranded gas fields: FLNGs

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>• More than 800 stranded fields > 1.5 Tcf in the world, suitable to FLNG solutions</td>
<td>• Meteocean constraints (berthing, cyclones)</td>
</tr>
<tr>
<td>• Reduced environmental footprint</td>
<td>• Hull (to remain compatible with shipyards)</td>
</tr>
<tr>
<td>• Cost-effective versus onshore options</td>
<td>• Turrets (efforts, safety): Designed to resist a hurricane with a return period of 10,000 years</td>
</tr>
<tr>
<td>• Can limit execution risks</td>
<td>• Weight management</td>
</tr>
<tr>
<td>• Redeployable</td>
<td>• Congestion</td>
</tr>
<tr>
<td>• Adaptation of existing technologies</td>
<td>• Motions management</td>
</tr>
</tbody>
</table>

Advantages
- More than 800 stranded fields greater than 1.5 Tcf in the world, suitable to FLNG solutions
- Reduced environmental footprint
- Cost-effective versus onshore options
- Can limit execution risks
- Redeployable
- Adaptation of existing technologies

Challenges
- Meteocean constraints (berthing, cyclones)
- Hull (to remain compatible with shipyards)
- Turrets (efforts, safety): Designed to resist a hurricane with a return period of 10,000 years
- Weight management
- Congestion
- Motions management
Key technological points to be validated in FLNG design

- Gas liquefaction process and mechanical drivers
- Offloading system
- Gas treatment processes
- LNG storage technology
- Turret
Innovation in Shipping
Innovation in Shipping

OBJECTIVES

Operation cost reduction
- Increase in shipping capacity: from MedMax to QMax
- From conventional steam turbines to Dual Fuel/Tri-Fuel Diesel Electric engines, MEGI, …
- Development of membrane containment system technology

Business Development
- Ice-breaking LNG tankers

INNOVATION

- Decrease shipping costs: by up to 0.5 $/MMBtu*
- Better efficiency of propulsion: from 25% to 30%
- BOG rate decrease from 0.15%/day to 0.10%/day

BENEFIT

- Access to new Arctic resources: 30-40 mtpa currently assessed and more prospective areas.

* For a 40-50 days round trip
Ice class LNG vessels for Arctic LNG project

- Ice class LNG vessels to be designed to ship through Kara Sea at all times and in North Sea Route during summer.
- Capacity up to 170,000 m3.
- Double acting concept, forward and backward
- Ships would cost between US $300 million to $350 million each.
- Speculative projects post 2025 in Russia, Greenland, Alaska…
Innovation in Regasification
Innovation in Regasification

OBJECTIVES
- Construction cost reduction
- Operation cost reduction
- Business Development

INNOVATION
- New FSRUs / Conversion of LNG carrier into FSRUs
- Air heating technology
- Improved fuel efficient in FSRUs with open loop technology, recondensers, ...
- FSRUs enabling a first step before onshore terminal, lower initial imports and fast installation

BENEFIT
- Lower CAPEX (equivalent to 10-20% of onshore terminal)
- Construction time: 10-18 months vs. 36-60 months
- Terminal CAPEX reduction: 1%
- Savings of up to $100k/day for a 3.5 mtpa FSRU
- Access to new markets: FSRUs could amount to 60 mtpa in 2020 (10% of regasification capacities)

Fos Tonkin, 1972
GDF SUEZ Neptune, 2010
Floating Regasification

A new regasification scheme: FSRUs

- Options: “permanently” moored, offshore or in a port (quay, berth)
- Being regularly used in regasification mode, their efficiency improvements will be:
 - Open-loop (limit fuel consumption)
 - Recondenser (limit BOG flaring); a higher operating pressure of LNG tanks would simplify BOG management
 - LNG transfer: ship-to-ship (aerial flexible hoses, articulated arms) or ship-to-jetty-to-ship
Development of Retail LNG markets
Retail LNG for maritime uses

OBJECTIVES

- Development of an LNG Bunkering vessel to feed sea-going ships
- Ship-to-ship transfer

INNOVATION

- Market potential of 25-30 mtpa by 2030

Environmental concerns

- A 5000m³ LNG Bunkering Vessel is currently developed by GDF SUEZ, together with NYK.

- The Basic concept approval was awarded by Bureau Veritas in May 2012.

- The Ship-to-Ship system is developed to enable successful and safe bunkering of various kind of customer ships (container, ro-ro, etc.)

Studies ongoing to:

- Optimize the BOG management while using pressurized LNG tanks.
- Validate the LNG quality with regards to ageing LNG.
- Evaluate various conditions of the LNG transfer for a safe design of the bunkering system (STS).

BENEFIT
THANK YOU!

GDF SUEZ

BY PEOPLE FOR PEOPLE